La régression est une technique statistique utilisée pour modéliser la relation entre une variable dépendante et une ou plusieurs variables indépendantes. Elle est largement utilisée dans divers domaines tels que l’économie, les sciences sociales, les sciences naturelles et l’apprentissage automatique. Cependant, choisir le bon type de régression dépend de plusieurs facteurs, y compris la nature des données et les objectifs de modélisation. Dans ce texte, nous explorerons différents types de régression et les situations dans lesquelles ils sont appropriés.
Régression linéaire
La régression linéaire est l’un des types les plus fondamentaux de modèles de régression. Elle suppose une relation linéaire entre la variable dépendante et les variables indépendantes. Ce modèle est simple à interpréter et à mettre en œuvre. Il est souvent utilisé lorsque les données montrent une relation linéaire et que les résidus (les différences entre les valeurs réelles et les valeurs prédites) sont distribués normalement. Cependant, il peut être limité lorsque la relation entre les variables n’est pas linéaire.
Régression logistique
La régression logistique est utilisée lorsque la variable dépendante est binaire (c’est-à-dire qu’elle a seulement deux catégories). Par exemple, prédire si un patient a une maladie ou non en fonction de ses caractéristiques médicales. Ce modèle est particulièrement adapté aux problèmes de classification binaire et est largement utilisé en sciences médicales et en sciences sociales.
Régression polynomiale
La régression polynomiale est une extension de la régression linéaire dans laquelle la relation entre la variable dépendante et les variables indépendantes est modélisée par un polynôme de degré supérieur à un. Cela permet de capturer des relations non linéaires entre les variables. Cependant, cela peut conduire à un surajustement si le degré du polynôme est trop élevé par rapport à la quantité de données disponibles.
Régression ridge et Lasso
La régression ridge et la régression Lasso sont des techniques de régression régularisée utilisées pour traiter le problème de multicolinéarité (lorsque les variables indépendantes sont fortement corrélées entre elles) et pour éviter le surajustement. Elles ajoutent une pénalité à la fonction de coût pour limiter les coefficients des variables indépendantes. La régression Lasso a également la propriété de sélectionner automatiquement un sous-ensemble de variables pertinentes, ce qui peut être utile pour la sélection de variables.
Régression robuste
La régression robuste est utilisée lorsque les données présentent des écarts importants par rapport aux hypothèses de la régression linéaire classique, tels que la présence de valeurs aberrantes ou de données non normalement distribuées. Elle utilise des méthodes robustes pour estimer les paramètres du modèle, ce qui la rend moins sensible aux observations aberrantes.
Le choix du type de régression dépend de la nature des données, des objectifs de modélisation et des hypothèses sous-jacentes. Il est souvent utile d’explorer plusieurs types de modèles et de techniques pour trouver celui qui convient le mieux à un problème
Quel type